Neurobiology of Addiction

David Crockford, MD, FRCPC

Associate Professor, University of Calgary, Dept of Psychiatry

Consultant, Foothills Hospital Addiction Centre

Neuroadaptational View of Addiction: Behavioural Sensitization

 Definition: Repeated exposure to a substance results in progressive and enduring enhancement of the motor stimulant effect induced by that substance.

Intermittent Exposure → Behavioural sensitization

Continuous Exposure → Tolerance

 Use results in a shift in incentive salience state depending on how well a drug induces behavioural sensitization.

Shift from drug *Liking* → Drug *Wanting* (or *Craving*)

 Associative learning links enhanced incentive value to substance-related visuospatial and emotional stimuli

Neuroadaptational View of Addiction: Homeostatic Changes

- Counteradaptive hypothesis: Initial acute effects of the substance are counteracted by homeostatic changes mediating primary drug effect.
- Reward thresholds elevate at a rate dependent on the substance's ability to produce a reward response.

Elevation of Reward Thresholds:

- Results in chronic shift in homeostatic set point
- Addiction development
 - Vulnerabilities & Protective factors:
 - Psychosocial
 - Temperament & Personality
 - Genetics (DA polymorphism, ADH, ALDH)
 - Co-morbidity
 - Early Exposure
- Source of other self-regulation failures mood, anxiety, perception
- Persistent vulnerability to relapse

Addiction Liability Relates to: Drug Type, Dose & Mode of Use

- Drug Type: Volatility, lipid solubility, bioavailability, and ability to activate DA
 - Cannabis & Alcohol → 10% of regular users develop dependence
 - Cocaine & Amphetamine → 10% of initial users develop dependence
- Increased dose → Increased addiction liability
- Mode of Use Addiction Liability: The more rapidly a drug is delivered to its site of action, the greater the reinforcing effect.
 - 1. Intravenous or smoked (bypass venous system)
 - 2. Intranasal
 - 3. Oral
 - 4. Transdermal

Alcohol Pharmacology:

- ALCOHOL → Alcohol Dehdrogenase (ADH) →
 ACETALDEHYDE → Acetaldehyde Dehydrogenase (ALDH)
 → ACETONE
- Zero order kinetics (ADH saturated at low levels)
- Lipophilic action increasing membrane fluidity now discounted as basis of action
- Opioid receptor gene (OPRM1) found in 15-25% of people may mediate response to naltrexone (87% vs 49%)
- Disulfiram acts via ALDH inhibition
- Best genetic data links ADH and ALDH polymorphisms to likelihood for dependence

Alcohol Pharmacology:

Acts via ligand-gated ion channels:

		ACUTE	WITHDRAWAL/ CHRONIC	MEDS?
•	NICOTINIC ACh Receptor	Stim. And Inhibition	Uncertain	?
•	DOPAMINE [Reward]	Stim. Release,	DECREASE	D3
•	OPIOIDS PEPTIDES	Stim. Release	?	NALTREXONE
•	GABA-A [Inhibition]	Stim. [Anxiolytic], Incr. DA	INHIBITION	TOPIRAMATE
•	GLUTAMATE [Excitation]	Inhibition, Incr. DA	ACTVATION	ACAMPROSATE
•	5-HT3 SEROTONIN	Stim.	INHIBITION	ONDANSETRON

Major Putative Native Neuronal nAChR Subtypes:

Nicotine releases ACh, NE, DA, S, glutamate, and GABA

Mechanism of Action for Cannabis:

- Acts via CB1 (brain) & CB2 (immune system) G-protein linked receptors inhibiting adenylyl cyclase
- CB1 receptors mediate neuropsychiatric effects:
 - Basal ganglia & Cerebellum (molecular layer) movement
 - Hippocampus & cortex memory
 - Ventromedial striatum & nucleus accubens addiction liability
- Neurotransmitter effects:
 - A cetylcholine decreases activity esp. in hippocampus
 - NMDA receptors inhibits activity
 - GABA increases activity
 - Dopamine increases activity in striatum and mesolimbic tissues & stimulates release in nucleus accumbens via disinhibition of GABA ergic tonic inhibition

Neuropsychological Effects of Cannabis:

- Acute/sub-acute (from 48-72 hours to 1 week) impairment of:
 - Verbal and visual memory
 - Executive functioning
 - Psychomotor speed
 - Manual dexterity
- Severity of use correlates to effects
- No evidence of long-term cognitive deficits with sustained abstinence

Bolla KI et al. *Neurology* 2002;59:1337-1343 Pope HG Jr, Yurgelun-Todd D. *JAMA* 1996;275:521-527

Opiods:

- Primary effects at mu, kappa and delta opioid receptors
- Opioid agonist mediated inhibition of GABA neurons results in disinhibition and activation of dopaminergic neurons
- Heroin shortest half-life
- More rapid pain tolerance than respiratory tolerance
- Withdrawal primarily mediated via noradrenergic system.
 - Locus cereleus
 - Role of clonidine (centrally mediated presynaptic alpha-2 receptor agonist)

Critical Role of Dopamine:

- Extended dopamine reward pathway activated by all substances of dependence
 - Hallucingoens like LSD primarily serotonergic minimal dependence
- Dopamine critical for:
 - Mood
 - Reward Experience & Expectation (esp. D3)
 - Motivation & Attention
 - Memory Salience
 - links substance use with emotional and visuospatial cues
 - Classic and operant conditioning of behaviour
- Primary role in the development of dependence, but less so in relapse and persistence of behaviour

COCAINE

Inhibits Reuptake of Dopamine + Norepinephrine

+Heroin: Speed-Ball

Meth: Vesicular monoamine transporter 2 (VMAT2), enhanced membrane transport

Psychopharmacology of Methamphetamine:

- Physical effects (sympathetic): hypertension, tachycardia, hyperthermia, tachypnea, vasoconstriction
- Acute psychological effects: euphoria, enhanced energy, increased alertness/attentiveness, increased speed of processing, feelings of enhanced physical and emotional capacity, decreased ability to filter information, increased libido
- Elimination half-life: 8 13 hours
- Greater lipid solubility than amphetamine
- Drug screen positive for 48-72 hours (high false positive rate)

Chronic Effects of Methamphetamine Use:

- Cardiovascular effects: pulmonary HTN, aortic dissection, MI, CVAs, hypertensive crisis.
- "Meth Mouth"
- HIV & Hepatitis C (risky IV use and sexual patterns)
- Antisocial behaviour and violence
- Psychosis usually short-term (< 10 days), but 1/3 may have symptoms up to 1 month esp. those with polymorphism at hDAT1 gene and/or noradrenergic hyperactivity may develop persistent psychoses
- Depression & Suicide (esp women, IV users) crash phase, alterations in amygdala activity, persistent hypodopaminergic state during early/mid abstinence
- ADHD cause or consequence?

 Dopamine reward pathway activated by substances of abuse in a greater and sustained fashion than natural rewards resulting in substance use behaviour taking on persistent and preferential importance

Self D. Am J Psychiatry 2004;161:223

Allostatic Change

 Chronic deviation of the regulatory system from its normal (homeostatic) operating level

Dopamine Activation With Natural Rewards

Dopamine Activation with Substance Use

Current Understanding of Substance Use Disorders

- Activation of dopamine reward pathways with exposure to addictive substance
- Reward expectancy coded in prefrontal cortex and hippocampus/ amygdala by dopamine activation
- Cues for addictive substance promote activation of prefrontal cortex
- Decreased dopamine activity with exposure to addictive substance once dependent

Kalivas P & Volkow N. Am J Psychiatry 2005

Neuropsychological Effects of Chronic Methamphetamine Use (DA Deficit State):

- Decreased episodic memory & learning deficient executive aspects of encoding & retrieval (frontostriatal)
- Decreased cognitive set shifting & response inhibition (frontal)
- Impulsive choices (medial frontal)
- Slowed information processing speed (striatal)
- Impaired attention, working memory (ACC, DLPFC)
- Unclear if duration & severity of use correlates with findings, ? neurotoxicity?
- Symptoms persist with complete abstinence for up to 9 months with inhibition and episodic memory last to recover (if it occurs)

Positive Covariation Between Regional Cerebral Glucose Metabolic rate (rCMRglc) and Beck Depression Inventory (BDI) Score in the Methamphetamine (MA) Abusers (n = 18) and in Controls (n = 17)

Role of Other Neurotransmitters:

- Norepinephrine/Epinephrine (Opioids)
 - Mood
 - Stress Response
 - Withdrawal
- Glutamate (Stimulants)
 - Cues
 - Drug Exposure & DA modulation
 - Exicitoxicity
- GABA (Alcohol, Benzodiazepines)
 - Drug Exposure & DA modulation
- Serotonin (Hallucinogens)
 - DA modulation
 - Mood & Anxiety

Pathways for Relapsing to Substance Use

- Stress including anxiety & depression result in increased amygdala activity (CRF, NE)
- Cues activate glutamatergic pathways including prefrontal cortex leading to cascade effect
- Low dose or other substance use re-initiates use via D3 pathway

Kalivas P & Volkow N. Am J Psychiatry 2005

Conditioned nicotine withdrawal decreased the activity of brain reward systems

Rational Pharmacotherapy for Addiction?

- Few evidence based pharmacotherapy options!
- Naltrexone: opioid antagonism blocking high
- A camprosate: GABA, glutamate modulation
- Disulfiram: inhibits aldehyde dehydrogenase
- Modafanil: 2 positive RCTs for cocaine dependence
- D2 Antagonists, SSRIs & other antidepressants: primarily negative trials
- Bupropion: partially blocks dopamine uptake (methamphetamine, nicotine)
- Varenicline (nicotine)
- Anticonvulsants: withdrawal, GABA modulation of DA activity (topiramate: alcohol, cocaine)
- Baclofen (cocaine, smoking)
- Methadone, Buprenorphine (opioids)